

# Comprehensive in vitro Proarrhythmia Assay (CiPA) Services



**ICE Bioscience INC** 

September 2019

| Targets              | Function                                 | Positive control | Method   |
|----------------------|------------------------------------------|------------------|----------|
| hERG (GLP available) | IKr, rapid repolarisation (phase 3)      | cisapride        | MPC, APC |
| NaV1.5               | INa, depolarisation (phase 0)            | TTX, flecainide  | MPC, APC |
| CaV1.2               | ICa-L, depolarization (phase 2)          | nifedipine       | MPC, APC |
| Kv7.1/minK           | IKs/KvLQT, slow repolarization (phase 3) | chromanol 293B   | MPC, APC |
| KV1.5                | IKur, repolarization (atrial)            | 4-AP             | MPC, APC |
| Kv4.3                | Ito, repolarization (phase 1)            | 4-AP             | MPC, APC |
| Kir2.1               | IK1, repolarization (phase 4)            | BaCl2            | MPC, APC |
| Kir3.1/3.4           | KAch, repolarization (atrial)            | BaCl2            | MPC      |
| Kir6.2/sur2          | КАТР                                     | glibenclamide    | MPC      |
| CaV3.2               | ICa-T, pacemaker current                 | NiCl2            | MPC, APC |
| HCN2                 | lf, pacemaker current                    | ivabradine       | MPC      |
| HCN4                 | If, pacemaker current                    | ivabradine       | MPC      |

\*MPC= Manual patch clamp, APC= Automated patch clamp (Nanion Patchliner® /Qpatch HTX48)



#### hERG Assay Data Sheet

| Channel            | KV11.1,hERG,IKr                         |
|--------------------|-----------------------------------------|
| Assay              | IC50                                    |
| Expression system  | HEK293 or CHO                           |
| Method             | whole cell patch clamp                  |
| Standard time      | 1-2 weeks                               |
| Reference compound | E4031, cisapride                        |
| Target             | QT-prolongation, Torsade de Pointe(TdP) |



Figure 1. Representative traces of hERG currents, before and after Casapride application at different concentrations









Figure 2. The time course of hERG currents after application of different Casapride concentrations



## Nav1.5 Assay Data Sheet

| Channel             | NaV1.5                                                                                                                                             |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Gene                | SCN5A                                                                                                                                              |
| Catalog Ref.        | ICE-HEK-Nav1.5                                                                                                                                     |
| Sources             | Human                                                                                                                                              |
| Expression system   | HEK293                                                                                                                                             |
| Method              | whole cell patch clamp                                                                                                                             |
| Standard time       | 2-4 weeks                                                                                                                                          |
| Reference inhibitor | ттх                                                                                                                                                |
| Target              | Brugada syndrome, long QT syndrome, progressive cardiac<br>conduction disease ,dilated cardiomyopathy, sick sinus syndrome,<br>Atrial Fibrillation |



Figure 1. Representative traces of Nav1.5 currents, before and after TTX application at different concentrations



Figure 3. Concentration-dependent effect of TTX on Nav1.5 currents



Figure 2. The time course of Nav1.5 currents after application of different TTX concentrations



Figure 4. Expression of Nav1.5 mRNA in the stable cell line



## Cav1.2 Assay Data Sheet

| Channel             | Cav1.2/β2/α2/δ1, L-type                                                                      |
|---------------------|----------------------------------------------------------------------------------------------|
| Catalog Ref.        | ICE-CHO-Cav1.2                                                                               |
| Gene                | CACNA1C/CACNB2/CACNA2D1                                                                      |
| Sources             | human                                                                                        |
| Expression system   | СНО                                                                                          |
| Method              | whole cell patch clamp                                                                       |
| Standard time       | 2-4 weeks                                                                                    |
| Reference Inhibitor | Nifedipine, verapamil                                                                        |
| Target              | Timothy syndrome, long QT syndrome, Pain, epilepsy, hypertension, stroke, arrhythmia, Autism |



Figure 1. Representative traces of Cav1.2 currents, before and after Nifedipine application at different concentrations



Figure 2. The time course of CaV1.2 currents after application of different Nifedipine concentrations



Figure 3. Concentration-dependent effect of Nifedipine on Cav1.2 currents



Figure 4. Expression of Cav2.1 mRNA in the stable cell line



# Kv1.5 Assay Data Sheet

| Channel            | Kv1.5                  |
|--------------------|------------------------|
| Gene               | KCNA5                  |
| Sources            | Human                  |
| Catalog Reference  | ICE-HEK-Kv1.5          |
| Expression system  | HEK293                 |
| Method             | whole cell patch clamp |
| Standard time      | 2-4 weeks              |
| Reference compound | 4-AP                   |
| Target             | Atrial fibrillation    |



Figure 1. Representative traces of Kv1.5 currents, before and after 4-AP application at different concentrations



Figure 2. The time course of Kv1.5 currents after application of different 4-AP concentrations



Figure 3. Concentration-dependent effect of 4-AP on Kv1.5 currents

Figure 4. Expression of Kv1.5 mRNA in the stable cell line



## Kv4.3 Assay Data Sheet

| Channel            | Kv4.3                                  |
|--------------------|----------------------------------------|
| Catalog Reference  | ICE-HEK-Kv4.3                          |
| Gene               | KCND3                                  |
| Sources            | Human                                  |
| Expression system  | HEK293                                 |
| Method             | whole cell patch clamp                 |
| Standard time      | 2 weeks                                |
| Reference compound | TEA or 4-AP                            |
| Target             | migraine, seizure and ataxia syndromes |



Figure 1. Representative traces of Kv4.3 currents, before and after 4-AP application at different concentrations



Figure 3. Concentration-dependent effect of 4-AP on Kv4.3 currents



Figure 2. The time course of Kv4.3 currents after application of different 4-AP concentrations



Figure 4. Expression of Kv4.3 mRNA in the stable cell line



# **KCNQ1/KCNE** Assay Data Sheet

| Channel            | Kv1.5                  |
|--------------------|------------------------|
| Gene               | KCNA5                  |
| Sources            | Human                  |
| Catalog Reference  | ICE-HEK-Kv1.5          |
| Expression system  | HEK293                 |
| Method             | whole cell patch clamp |
| Standard time      | 2-4 weeks              |
| Reference compound | 4-AP                   |
| Target             | Atrial fibrillation    |



Figure 1. Representative traces of KCNQ1 currents, before and after chromanol 293B application at different concentrations



Figure 2. The time course of KCNQ1 currents after application of different chromanol 293B concentrations









# Kir2.1 Assay Data Sheet

| Channel            | Kv1.5                  |
|--------------------|------------------------|
| Gene               | KCNA5                  |
| Sources            | Human                  |
| Catalog Reference  | ICE-HEK-Kv1.5          |
| Expression system  | HEK293                 |
| Method             | whole cell patch clamp |
| Standard time      | 2-4 weeks              |
| Reference compound | 4-AP                   |
| Target             | Atrial fibrillation    |



Figure 1. Representative traces of Kir2.1 currents, before and after BaCl2 application at different concentrations



Figure 2. The time course of BaCl2 currents after application of different BaCl2 concentrations



Figure 3. Concentration-dependent effect of BaCl2 on BaCl2 currents



Figure 4. Expression of BaCl2 mRNA in the stable cell line



# Action potential of rabbit Purkinje fiber





# Action potential of guinea pig papillary muscle

